Master Kick-off 2018: Master Electrical Engineering
28 August 2018

Huug de Waardt & Harald van den Meerendonk
Program August 28, 2018

- 10:30 - 11:15 Master program EE Honors Program
- 11:15 – 11:30 EE Master Associations
- 11:30 - 12:00 Professional Development in the Master Mentor system Diagnostic Tests
- 12:00 – 13:00 Lunch
- 13:00 Flux 6.154 for workshops Photonics
Contents

• Intro Graduate School
• Master Program
• Special Master’s tracks
• Digital Approval form study package
• Graduation / Master Market Place
• Digital Study Guide
Who is Who in the Master Program?

Ir. Harald van den Meerendonk
Academic Advisor Master Students EE

Dr. Ir. Huug de Waardt
Director Graduate Program EE
Associate Professor ECO

Dr. Sonia Gomez-Puente
Policy Advisor EE/Teacher Professional Development (until 31/08/2018)
What is the Graduate School?

Everything except the Bachelor College

- Master MSc 260
- Post Master:
 - Designer Program PDEng 20
 - Research Program PhD 280
• Department EE since 1957
• Education and Research
• 1125 BSc and MSc students
• 381 employees
 – 280 PhD students (incl. NOP)

• Intense cooperation with high-tech industry and research institutes
 (e.g. Philips, NXP, ASML, OCE, TNO, Thales, ...)

• Three main research themes (Societal embedding Electrical Engineering)
 – Connected World
 – Smart and Sustainable Society
 – Care and Cure
Theme 1

The Connected World
Smart and Sustainable Society
Theme 3

Care and Cure
Contents

• Intro Graduate School
• Master Program
• Special Master’s tracks
• Digital Approval form study package
• Graduation / Master Market Place
• Digital Study Guide
Master Electrical Engineering 120 EC

Year 1
(60 ects)

Core Program (3 courses) 15
Specialisation Program (2 courses) 10
Electives (6 courses) 30
Prof. Development 5

Year 2
(60 ects)

Traineeship 15
Graduation project 45
Core courses

- Three core courses from set of eight
- Free choice
- Research groups recommend preferences

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DME30</td>
<td>Complex Analysis</td>
<td>Q1</td>
</tr>
<tr>
<td>5CCA0</td>
<td>Semiconductor Physics and Materials</td>
<td>Q1</td>
</tr>
<tr>
<td>2DME10</td>
<td>Discrete Mathematics</td>
<td>Q1</td>
</tr>
<tr>
<td>5CHA0</td>
<td>Classical and Modern Physics</td>
<td>Q1</td>
</tr>
<tr>
<td>5CPA0</td>
<td>Numerical Methods for Electrical Engineers</td>
<td>Q1</td>
</tr>
<tr>
<td>2DME20</td>
<td>Nonlinear Optimization</td>
<td>Q1</td>
</tr>
<tr>
<td>5CTA0</td>
<td>Statistical Signal Processing</td>
<td>Q1</td>
</tr>
<tr>
<td>5CSA0</td>
<td>Modeling Dynamics</td>
<td>Q1</td>
</tr>
</tbody>
</table>
Research groups

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Research group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO</td>
<td>Electro-Optical Communication</td>
</tr>
<tr>
<td>PHI</td>
<td>Photonic Integration</td>
</tr>
<tr>
<td>MsM *</td>
<td>Mixed-signal Microelectronics</td>
</tr>
<tr>
<td>SPS</td>
<td>Signal Processing Systems</td>
</tr>
<tr>
<td>ES</td>
<td>Electronic Systems</td>
</tr>
<tr>
<td>EES</td>
<td>Electrical Energy Systems</td>
</tr>
<tr>
<td>EPE</td>
<td>Electromechanics and Power Electronics</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetics</td>
</tr>
<tr>
<td>CS</td>
<td>Control Systems</td>
</tr>
</tbody>
</table>

*) From 2018-2019 on MsM is renamed as IC (= Integrated Circuits)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Research group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO</td>
<td>Electro-optic Communication systems</td>
</tr>
<tr>
<td>PHI</td>
<td>Photonic Integration</td>
</tr>
<tr>
<td>MsM</td>
<td>Mixed-signal-Microelectronics</td>
</tr>
<tr>
<td>SPS</td>
<td>Signal Processing Systems</td>
</tr>
<tr>
<td>ES</td>
<td>Electronic Systems</td>
</tr>
<tr>
<td>EES</td>
<td>Electrical Energy Systems</td>
</tr>
<tr>
<td>EPE</td>
<td>Electromechanics and Power Electronics</td>
</tr>
<tr>
<td>EM</td>
<td>Electro-Magnetism</td>
</tr>
<tr>
<td>CS</td>
<td>Control Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Complex Analysis (2DME30)</th>
<th>Discrete Mathematics (2DME10)</th>
<th>Non-linear Optimization (2DME20)</th>
<th>Semiconductor physics and materials (5CCA0)</th>
<th>Statistical Signal Processing (5CTA0)</th>
<th>Classical and Modern Physics (5CHA0)</th>
<th>Numerical Methods for Electrical Engineers (5CPA0)</th>
<th>Modeling Dynamics (5CSA0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>◆</td>
<td>◆</td>
<td></td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>ECO</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>PHI</td>
<td></td>
<td>◆</td>
<td>◆</td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>EES</td>
<td>✓</td>
<td>✓</td>
<td>◆</td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>EPE</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>EM</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>ES</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>MsM</td>
<td></td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>SPS</td>
<td>✓</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
</tbody>
</table>

◆ = Important
✓ = Preferred
Specialisation path I

- Two specialisation courses from research groups in Q2 and Q3

<table>
<thead>
<tr>
<th>Path</th>
<th>Code</th>
<th>Name</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>5SMA0</td>
<td>Model-based Control</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SMB0</td>
<td>System Identification</td>
<td>Q3</td>
</tr>
<tr>
<td>ECO</td>
<td>5SHA0</td>
<td>Photonic Integrated Devices</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5STA0</td>
<td>Optical Fibre Communications Technology</td>
<td>Q3</td>
</tr>
<tr>
<td>EES-1</td>
<td>5SEC0</td>
<td>Planning and Operation of Power Systems</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SEB0</td>
<td>Decentral Power Generation and Active Networks</td>
<td>Q2</td>
</tr>
<tr>
<td>EES-2</td>
<td>5SVA0</td>
<td>High Voltage Technology</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SVB0</td>
<td>Electromagnetic Compatibility</td>
<td>Q3</td>
</tr>
</tbody>
</table>
Specialisation path II

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Research group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO</td>
<td>Electro-optic Communication systems</td>
</tr>
<tr>
<td>PHI</td>
<td>Photonic Integration</td>
</tr>
<tr>
<td>MsM</td>
<td>Mixed-signal-Microelectronics</td>
</tr>
<tr>
<td>SPS</td>
<td>Signal Processing Systems</td>
</tr>
<tr>
<td>ES</td>
<td>Electronic Systems</td>
</tr>
<tr>
<td>EES</td>
<td>Electrical Energy Systems</td>
</tr>
<tr>
<td>EPE</td>
<td>Electromechanics and Power Electronics</td>
</tr>
<tr>
<td>EM</td>
<td>Electro-Magnetism</td>
</tr>
<tr>
<td>CS</td>
<td>Control Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Path</th>
<th>Code</th>
<th>Name</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>5SPB0</td>
<td>Microwave Engineering and Antennas</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SPD0</td>
<td>Electromagnetic Modeling Techniques</td>
<td>Q3</td>
</tr>
<tr>
<td>ES</td>
<td>5SIA0</td>
<td>Embedded Computer Architecture</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SIB0</td>
<td>Electronic Design Automation</td>
<td>Q3</td>
</tr>
<tr>
<td>EPE-1</td>
<td>5SWA0</td>
<td>Rotary Permanent Magnet Machines</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SWB0</td>
<td>Advanced Power Electronics</td>
<td>Q3</td>
</tr>
<tr>
<td>EPE-2</td>
<td>5SWC0</td>
<td>Linear and Planar Motors for High-Precision Systems</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SWB0</td>
<td>Advanced Power Electronics</td>
<td>Q3</td>
</tr>
<tr>
<td>Path</td>
<td>Code</td>
<td>Name</td>
<td>Q</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>MsM-1</td>
<td>5SFA0</td>
<td>Data Converters 1: Fundamentals</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SFD0</td>
<td>Data Converters 2: Design</td>
<td>Q3</td>
</tr>
<tr>
<td>MsM-2</td>
<td>5SFB0</td>
<td>RF Transceivers 1: Fundamentals</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SFE0</td>
<td>RF Transceivers 2: Design</td>
<td>Q3</td>
</tr>
<tr>
<td>PHI</td>
<td>5SHA0</td>
<td>Photonic Integrated Devices</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SHB0</td>
<td>Photonic Integration: Technology and Characterization</td>
<td>Q3</td>
</tr>
<tr>
<td>SPS</td>
<td>5SSB0</td>
<td>Adaptive Information Processing</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td>5SSC0</td>
<td>Adapive Array Signal Processing</td>
<td>Q3</td>
</tr>
</tbody>
</table>
• Choose a total of six courses (30 ECTS)

• Choose from about 60 EE-courses, other TU/e-master courses, 3rd level (Advanced) bachelor courses from EE or master courses from other universities

• Need approval of graduation supervisor for 15 ECTS (3 courses), other 15 ECTS are free of choice

• See the Digital Study Guide for an overview of all electives
• Individual project of 15 ECTS. Can be extended with 5 ECTS (5M030 replacing one elective)

• Project contributes to the research of the supervising research group

• Can be done inside and outside the university, preferably abroad to obtain international experience

• Always under the responsibility of EE staff member

• Fill in the internship contract before starting (download from the Digital Study Guide)
Graduation

- Individual project of 45 ECTS
- Project contributes to the research of the supervising research group
- Can be done inside and outside the university
- Always under the responsibility of EE staff member
- Start of the graduation project allowed when a maximum of two electives are still open and everything is finished
- Before the start, ask for graduation contract from the student administration
Contents

• Intro Graduate School
• Master Program
• **Special Master’s tracks**
• Digital Approval form study package
• Graduation / Master Market Place
• Digital Study Guide
Two tracks:

- Connected World Technologies

- Care & Cure (C&C) with subtracks:
 - Neurology
 - Oncology
 - Cardiology
 - Perinatology
Requirements for certificate:

• Core & specialisation courses from specific group
• Two other specialisation courses from related groups
• Graduation work in area, with supervisor from group

<table>
<thead>
<tr>
<th>Special Master’s Track</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected World Technologies</td>
<td>ECO, PHI, EM, SPS, MsM</td>
</tr>
<tr>
<td>Care & Cure</td>
<td>SPS, MsM, EM</td>
</tr>
</tbody>
</table>
Requirements for subcertificate C&C:

- Meet the criteria for the C&C Certificate
- Choose three master electives from a specific C&C subtrack (see the Digital Study Guide)
Contents

• Intro Graduate School
• Master Program
• Special Master’s tracks
• Digital Approval form study package
• Graduation / Master Market Place
• Digital Study Guide
Approval form study package

- Form available at Digital Study Guide
- Diagnostic tests completed?:
 - A Broad Test on Skills (SKL00)
 - In-depth Test on Teamwork Skills (SKL10)
 - In-depth Test on Presentation Skills (SKL20)
 - In-depth Test on Academic Writing Skills (SKL30)
- Personal Development Plan discussed with mentor?
- Code of Scientific Conduct signed?
- Specialization path chosen?
- Return filled-in form at the end of Q1
Contents

• Intro Graduate School
• Master Program
• Special Master’s tracks
• Digital Approval form study package
• Graduation / Master Market Place
• Digital Study Guide
Master Market Place: What?

• Last year, start with a pilot for a structured application procedure for graduation assignments. We call it the Master Market Place.

• On-line registration and application tool for courses and graduation projects

• EE bachelor students are already familiar with the system as many features are similar as the BEP market place.
Master Market Place: Why?

• Steadily growing number (influx doubled in 7 years, and increased bachelor efficiency) of students in the master phase requires the capacity groups (research groups) to careful plan and match their available resources to guarantee sufficient graduation assignments while maintaining high quality.

• The load for the capacity groups must remain manageable

• Early Identification of specialization courses and electives will help students with their planning.
Master Market Place: How?

- First step: students fill in the on-line registration form their prefered capacity group
- Students enter their preferred specialization courses and electives
- Students complete there application form indicating their first, second and third preference for the graduation capacity group
Master Market Place: When?

- Registration tool on-line: possibly week 2 of Q1?
- Deadline for the provisional registration of the capacity group: 28 September 2018
- Final registration graduation capacity group, specialization courses and electives before 14 October 2018 (= deadline for registration courses Q2)
- Also register your specialization in Osiris
Register For Master Program

Student: student0

Cohort: 2017

Origin: BSc ILE TU/e

Institute:

Program: Electronic Systems

Electives:

OutOfFacultyCourses:

Save

Feedback
<table>
<thead>
<tr>
<th>BSc EE TU/e</th>
<th>CS</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc EE TU/e</td>
<td>MsM-2</td>
<td>-</td>
</tr>
<tr>
<td>BSc EE TU/e</td>
<td>ECO</td>
<td>-</td>
</tr>
<tr>
<td>BSc EE TU/e</td>
<td>EPE-2</td>
<td>-</td>
</tr>
<tr>
<td>BSc EE TU/e</td>
<td>SPS</td>
<td>-</td>
</tr>
</tbody>
</table>

CS
- 5EH0 - Photonic integrated devices
- SLMA0 - Model reduction
- SLPB0 - Phased array and smart antennas
- SSVB0 - Electromagnetic compatibility
- SLMC0 - Robust control
- SLMD0 - Selected topics in systems and control
- SLME0 - Advanced process control

MsM-2
- SLF0 - Electronics: Selected Topics
- SSC0 - Advanced CMOS design
- SSB0 - Microwave engineering and antennas
- SSWB0 - Advanced power electronics
- SLPH0 - Phased array and smart antennas
- SLFL0 - Terahertz systems

ECO
- SLPD0 - Wireless communications
- SLDH0 - Digital integrated circuit design
- SSSC0 - Adaptive array signal processing
- SSSB0 - Photonic integration: technology and characterization
- SLPF0 - Terahertz systems
- SLBT0 - Fibre optic communication systems and networks

EPE-2
- SMC0 - Extension Internship EE
- SSVA0 - High voltage technology
- SSVB0 - Electromagnetic compatibility
- SSWD0 - Advanced actuator design
- SLWH0 - Modelling and control of power converters
- SLWG0 - Power electronics for high-precision applications

SPS
- SSB0 - Decentral power generation and active networks
- SLGD0 - Neuroimaging
- SLSB0 - Monitoring of respiration and circulation
- SLSD - Image analysis for health-care technologies
- SSSC0 - Adaptive array signal processing
- SSSB0 - Adaptive information processing
- SLSL0 - Machine learning for signal processing
Published projects

<table>
<thead>
<tr>
<th>Name</th>
<th>Research group</th>
<th>Responsible staff</th>
<th>Assistants</th>
<th>Specialization Path</th>
<th>End date visible</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cost Two-Dimensional Optical Pressure Sensor For Patient Monitoring</td>
<td>ECO</td>
<td>Henrie Boom, van den</td>
<td>Any</td>
<td>None</td>
<td>Not yet started</td>
<td></td>
</tr>
<tr>
<td>Design Of A T tunable Polarization Beam Splitter/Comb Filter In An InP- based Generic Platform</td>
<td>PHY</td>
<td>Erwin Bente</td>
<td>● Stefanos Andreou</td>
<td>PHY</td>
<td>None</td>
<td>Not yet started</td>
</tr>
<tr>
<td>Sensors For Pregnancy Monitoring</td>
<td>MsM</td>
<td>Pieter Harpe</td>
<td>● yijing, zhang</td>
<td>MsM-1</td>
<td>None</td>
<td>Not yet started</td>
</tr>
<tr>
<td>Moving Target Indication For The Sentinel-1 SAR-TOPS Sensor (External Project At Space-company)</td>
<td>EM</td>
<td>Bart Smolders</td>
<td>● Ulf Johannsen</td>
<td>Any</td>
<td>None</td>
<td>Not yet started</td>
</tr>
<tr>
<td>Risks Of Network Operation During Floods</td>
<td>EES</td>
<td>Vladimir Cuk</td>
<td>Any</td>
<td>None</td>
<td>Not yet started</td>
<td></td>
</tr>
<tr>
<td>Machine/Deep Learning On High-Performance Dynamically-Reconfigurable FPGAs</td>
<td>ES</td>
<td>Koos Goossens</td>
<td>● ES</td>
<td>None</td>
<td>Not yet started</td>
<td></td>
</tr>
<tr>
<td>Design And Simulation Of Optical Vias And Bridges In 3D Monolithically Integrated SiP</td>
<td>ECD</td>
<td>Patty Stabile</td>
<td>Any</td>
<td>None</td>
<td>Not yet started</td>
<td></td>
</tr>
<tr>
<td>Electromyography And Sleep</td>
<td>SPS</td>
<td>Massimo Mischi</td>
<td>● Chiara Rabotti</td>
<td>Any</td>
<td>None</td>
<td>Not yet started</td>
</tr>
<tr>
<td>● Bruno Arsenali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Promotions:

- **DSD Waldur**
 - Waldur is a student association for master students in Electrical Engineering interested in power engineering. We organize lunch lectures, excursions, ...

- **MA Eir**
 - Master Association Eir is a student branch of e.i.s.v. Thor from the Electrical Engineering faculty. Eir focuses on students who...
Contents

• Intro Graduate School
• Master Program
• Special Master’s tracks
• Digital Approval form study package
• Graduation / Master Market Place
• Digital Study Guide
Other master student related topics

- IND Study Progress Check for non-EU students
- Registration for courses and exams / Administrative Costs Arrangement
- Fill in approval form before end Q1
- International experience
- “ARBO”-training
IND Study Progress Check

- Non-EU-students with a residence permit for study
- IND: obtain at least 50% of the maximum number of credits per year
- **30 EC per academic year**
- Preliminary check in February, final check in November over the previous academic year
- In case of problems, contact Academic Advisor in time
Registration for courses and exams

• Always register in time for courses and exams in Osiris
• Register for maximum 20 EC per quarter
• Registration too late: Administrative Cost Arrangement: pay €20 per course for registration (under specific conditions)
Fill in study program approval form

• Digital Study Guide: download and fill in the study program approval form
• An overview of your study program with your core courses, specialization and electives
• Send it to spc.ee@tue.nl for approval by the Examination Committee
International Experience

• Get at least 15 EC of international experience

• Follow courses abroad

• Internship abroad

• Graduation project abroad
Training Health and Safety Risk management ("ARBO-training")

- All new (=new to Flux) students have to follow the "ARBO-training"
- Training (30 minutes) about health and safety regulations regarding the work environment
- A-M: Wednesday, September 5th
- N-Z: Friday, September 7th
- From 12:45h till 13:15h in Flux 1.02
Digital Study Guide

All information (except MMP) regarding the curriculum can be found at the Digital Study Guide:

https://educationguide.tue.nl/programs/graduate-school/masters-programs/electrical-engineering/
Any Questions ???
EE Master Associations

• Goal: help (master) students to explore educational and job opportunities in a specific area

• Organizing activities
 – Excursions
 – Lunch lectures
 – Study trip

• Waldur, ODIN, EIR, IEEE
Master study association Waldur

- Electricity Network / Smart Grids
- Sustainability
- Power Conversion / Power electronics
- Electromechanics
- Automotive

Groups: EPE/EES

- Board -> Looking for successors!

Communication

- Magazine Gjallar
- Website: www.Waldurnl
- Facebook: https://fb.com/dsdwaldur/
- LinkedIn group
How do we connect?
• Company visits
• Lunch lectures
• Study tours
• Network events
• Vacancies
• Symposium
• Informal Drink
Master Association ODIN

- Founded: 10 March 1980
- Members: +/- 60
- Own alumni society: IORD

- Purpose: Introduce pre-master and master students into the field of telecommunications and information technology. Promote research in these fields.

- Excursions, lectures, trips, symposia, workshops, etc.
What is Eir?

- Care & Cure
- Started in 2016
- +- 50 members

Expertise

- Electromagnetics
- Image Processing
- Bio-Electronics
- Control Systems
- Signal Processing

XPlore your Master
Excursions or lunch lectures

XPlore your Master

PHILIPS Healthcare

DEMCON | medical robotics

JÜLICH FORSCHUNGSZENTRUM

Erasmus MC

Universitair Medisch Centrum Rotterdam
IEEE Student Branch Eindhoven

• In short
 – General Master association situated at Electrical Engineering
 – We arrange IEEE Memberships
 – Study related activities like workshops and lectures

 – However also a lot of fun stuff like:
 • Our annual sailing weekend together with IEEE Belgium
 • 24 hours programming competition
 • Drinks and BBQ’s