The Dean of the TU/e Honors Academy of Eindhoven University of Technology hereby establishes these TU/e Honors Academy Regulations for bachelor Honors Tracks, as approved by the Executive Board on 22 June 2017 and 29 November 2018. These TU/e Honors Academy Regulations, which entered into force on 1 September 2017 and were altered for ancillary points that retroactively apply as of 1 September 2017, read as follows:

Art 1 TU/e Honors Academy

1.1 The overall aim of the TU/e Honors Academy is to prepare students for personal leadership as well as scientific, societal and/or industrial leadership in a knowledge-intensive economy and society.

1.2 The TU/e Honors Academy offers cross-departmental, institution-wide honors programs for bachelor students, which are called ‘Honors Tracks’.

1.3 The TU/e Honors Academy has a Dean, who has the overall responsibility for the vision on and policy related to contents, offer and set-up of Honors Tracks, the assessments included, and for the quality assurance system (see art. 10 and Appendix 1). The Dean is advised by the Scientific Council, which is chaired by the Rector Magnificus.

1.4 The TU/e Honors Academy has an Honors Student Council in which every track is represented by one of its students. This council fulfills the role of monitoring the execution of the programs provided by the Honors Tracks from a student perspective (see art. 10 and Appendix 1).

Art 2 Honors tracks

2.1 Each Honors Track has a track coordinator who is responsible for operationalizing the overall vision and policy for his or her Honors Track.

2.2 Honors Tracks offer open-ended projects or challenges that are related to TU/e Strategic Areas and other multidisciplinary research themes. These open-ended projects open up opportunities for students to create their own challenges and to be in the lead of their own personal and professional development.

2.3 For students’ personal and professional development a common TU/e Honors Academy competence framework has been established: Academic competences for TU/e Honors students (see Appendix 2).
Art 3 Workload

3.1 Students participating in an Honors Track have a workload equivalent to 15 credits per academic year. This honors workload is on top of students’ workload of 180 credits in their regular Bachelor’s program.

3.2 Students do their honors work parallel to their second and/or third year of their Bachelor’s study.

3.3 Students can choose between doing either one year or two years of honors work. This implies that students who want to start their honors work in their third year of their Bachelor study can only do the first Honors year.

Art 4 Application, selection and admission to the first Honors year

4.1 Early in the second semester, first-year students who have obtained at least 30 credits in the first semester of their first year of study will be invited to consider participating in an Honors Tracks.

4.2 Students who have not received such an invitation but believe they qualify for participation in an Honors Track are also allowed to apply for a position in an Honors Track.

4.3 In order to apply for a particular track the student is required to submit a letter of motivation to the coordinator of the Honors Track involved.

4.4 If the letter of motivation is convincing, the coordinator of the Honors Track involved will invite the student for an application interview.

4.5 Students who satisfactorily support their motivation and show their suitability as well as assets for the Honors Track involved during the assessment interview are admissible to the track involved.

4.6 At a plenary selection meeting with all the track coordinators the decision is taken which admissible candidates will be conditionally accepted to the Honors track they applied for. Students that are not conditionally accepted by the track they applied for but have shown convincing motivation and suitability for the TU/e Honors Academy in general, have a right to apply for a position in another Honors Track.

4.7 Students who are conditionally accepted will be admitted to the first Honors year if they have successfully completed all the study components that are part of the propaedeutic phase of their Bachelor’s program at the start of their second year of study.

4.8 For students who want to apply for one year of Honors work parallel to their third year of their Bachelor study the same procedure and requirements apply, with the exception that after conditional acceptance they will be admitted if they have successfully completed the first and second year of their Bachelor program. Successful completion means that they have obtained 120 credits at the start of their third year of study.
Art 5 Admission to the second Honors year

5.1 Students are admitted to the second Honors year if they meet with the following two conditions:

--- successful completion of the first Honors year, which means they have passed the end-of-year assessment and have obtained 15 credits;
--- successful completion of the second year of their Bachelor’s program, which means that at the start of their third year of study they have obtained 120 credits in total.

Art 6 Switching Honors track

6.1 Students who have met with both conditions for admission to the second Honors year as laid down in article 5 have the option to switch to another Honors Track. Switching to another track is only allowed:

- after successful completion of students’ first Honors year, so if they have passed the end-of-year assessment and have obtained 15 credits, but before the start of their second Honors year, and
- if the coordinators of both the current and prospective Honors Tracks approve the switch.

Art 7 Annual assessment

7.1 Students are assessed once per Honors year, at the end of the academic year. For this annual assessment the process and procedure are laid down in a common assessment framework, as established by the Dean of the TU/e Honors Academy. All Honors coaches and students receive a copy of this assessment framework.

7.2 The assessment includes students’ personal, professional and project-related development as well as the quality of the project results delivered during the year as part of the Honors track.

7.3 The assessment consists of both written and oral components.

7.4 The minimum student submission for the written component is a project report, a reflection on their development and – in case of team collaboration – a reflection on their contribution to the process and results achieved by the group.

7.5 The oral component is an assessment interview conducted with the student by two assessors: the student’s coach and a coach from another Honors Track.

7.6 The two assessors jointly determine the result of the assessment based on the written and oral components.

7.7 The assessment can be graded as ‘Insufficient’, ‘Sufficient’, ‘Good’ or ‘Excellent’.
7.8 Students with an assessment graded ‘Sufficient’ or higher have successfully completed the Honors year involved and will be awarded 15 credits. Students with an assessment graded ‘Insufficient’ will be awarded 0 (zero) credits.

7.9 Students receive a copy of their assessment form.

Art 8 Completion, certificate and statement on degree certificate

8.1 Students who only successfully complete the first Honors year will be awarded 15 credits and a certificate signed by the Dean of the TU/e Honors Academy in acknowledgment of their achievement.

8.2 Students who successfully complete two Honors years will be awarded 30 credits and will have their achievement mentioned on their Bachelor’s degree certificate. They will also receive a letter of recommendation signed by the Dean of the TU/e Honors Academy.

Art 9 Right to appeal

9.1 Students who disagree with the decision of their assessors have a right to appeal.

9.2 The student must lodge this appeal in writing to the Examination Appeals Board (Art. 7.61, paragraph 1, under e, of the WHW).

Art 10 Quality assurance

10.1 In order to safeguard the quality of the Honors Tracks the TU/e Honors Academy has set up a quality assurance system for which the Dean is responsible. The quality assurance system comprises the following components: accountability to the Scientific Board of the TU/e Honors Academy, external benchmarking with peers, on-going monitoring, the annual evaluation cycle and professionalization activities for the staff members involved in the Honors Tracks. The quality assurance system is described in more detail in Appendix 1.
Appendix 1: Quality Assurance system TU/e Honors Academy

The quality assurance system of the Honors Academy comprises several components: accountability to the Scientific Board of the Honors Academy, external benchmarking with peers, on-going monitoring, the annual evaluation cycle and professionalization activities for the staff members involved in the tracks,

Accountability to the Scientific Board
Once or twice a year a meeting with the Scientific Board is organised to discuss developments in the Honors Academy and developments TU/e wide. Recurring topics include progress with respect to the set-up of the BSc tracks and the MSc personal leadership & professional development program, student intake, students’ learning outcomes and budget. Outcomes are translated into measures to be taken at the tactical and operational level.

External benchmarking with peers
Benchmarking with peers occurs at two levels. The Deans of the honors programs of Dutch universities participate in the Honors Deans Network. Experiences at the strategic level are exchanged. In addition, the Honors Academy participates in a network for policy officers involved in honors programs at Dutch universities, and in a network for all honors programs in Dutch higher education, which is a follow-up of the Sirius network. As part of this network study days on specific topics are organized. Once a year the TU/e Honors Academy also participates in a 4.TU meeting with staff members and students involved in the honors programs. These meetings focus on topics for which input from peers may provide new insights and improvements. Finally, the Honors Academy intends to continue the formal peer feedback process initiated by Sirius.

On-going monitoring
During the academic year the Honors Academy monitors progress with the track coordinators and with the Honors Student Council. The goal of the coordinator meetings is to evaluate if there are any issues that require immediate action and to create a common frame of reference for the coordination of the honors tracks. At the student level similar meetings are organized with the Honors Student Council, consisting of representatives from each Honors Track. In the first meeting with this council the outcomes of the annual student survey are discussed.

Annual evaluation cycle
The annual evaluation cycle focuses on the extent to which the overall goals of the TU/e Honors Academy are accomplished. The main input consists of the outcomes of the annual student questionnaire for the total group of honors students as well as per year group and per track. These outcomes are shared with the track coordinators. Their reflections and points for improvement are discussed in the annual one-on-one evaluation interviews between the coordinators and the director of the Honors Academy. The outcomes of the annual student survey are also discussed in the first meeting with the Honors Student Council.

Professionalization activities
Every year an assessment workshop is organized to prepare coaches for the annual assessment process. In addition, a workshop for new coaches has been set up to familiarize them with their coaching role.
Appendix 2: Academic competences for TU/e Honors students

For TU/e bachelor and master graduates a set of seven academic competences have been defined. For Honors students an eighth competence has been added:

A TU/e Honors student

1. is competent in one or more scientific disciplines
A university graduate is familiar with existing scientific knowledge, and has the competence to increase and develop this through study.

--- Has a thorough mastery of parts of the relevant fields extending to the forefront of knowledge (latest theories, methods, techniques and topical questions).
--- Is able to reflect on standard methods and their presuppositions; is able to question these; is able to propose adjustments, and to estimate their implications.
--- Is able to independently spot gaps in his / her own knowledge, and to revise and extend it through study.

2. is competent in doing research
A university graduate has the competence to acquire new scientific knowledge through research. For this purpose, research means: the development of new knowledge and new insights in a purposeful and methodical way.

--- Is able to reformulate ill-structured, more complex research problems. Also takes account of the system boundaries in this. Is able to defend this new interpretation against involved parties.
--- Is able to produce and execute a research plan independently.
--- Is able, and has the attitude to, where necessary, draw upon other disciplines in his or her own research.

3. is competent in designing
As well as carrying out research, many university graduates will also design. Designing is a synthetic activity aimed at the realisation of new or modified artefacts or systems with the intention of creating value in accordance with predefined requirements and desires (e.g. mobility, health).

--- Is able to reformulate ill-structured, more complex design problems. Also takes account of the system boundaries in this. Is able to defend this new interpretation against the parties involved.
--- Is able to produce and execute a design plan independently.
--- Is able, and has the attitude to, where necessary, draw upon other disciplines in his or her own design.

4. has a scientific approach
A university graduate has a systematic approach characterised by the development and use of theories, models and coherent interpretations, has a critical attitude, and has insight into the nature of science and technology.

--- Has great skill in, and affinity with the use, development and validation of models; is able to consciously choose from various modelling techniques.
--- Is able to document adequately the results of research and design with a view to contributing to the development of knowledge in the field and beyond; is able to publish these results.
5. possesses basic intellectual skills
A university graduate is competent in reasoning, reflecting, and forming a judgment. These are skills which are learned or sharpened in the context of a discipline, and which are generically applicable from then on.
--- Is able to critically reflect on his or her own thinking, decision making, and acting and to adjust these on the basis of this reflection independently.
--- Is able to ask adequate questions, and has a critical yet constructive attitude towards analysing and solving more complex, real-life problems in the field.

6. is competent in co-operating and communicating
A university graduate has the competence of being able to work with and for others. This requires not only adequate interaction, a sense of responsibility, and leadership, but also good communication with colleagues and non-colleagues. He or she is also able to participate in a scientific or public debate.
- Is able to perform project-based work, also for more complex projects: is pragmatic and has a sense of responsibility; is able to deal with limited sources; is able to deal with risks; is able to compromise.
- Is able to work within an interdisciplinary team, also in teams with great disciplinary diversity; has insight into and is able to deal with, team roles and socialdynamics.
- Is able to communicate about the process and results of learning, thinking and decision making with colleagues and non-colleagues in his or her own mother tongue as well as in a second language.

7. takes account of the temporal and the social context
Science and technology are not isolated, and always have a temporal and social context. Beliefs and methods have their origins; decisions have social consequences in time. A university graduate is aware of this, and has the competence to integrate these insights into his or her scientific work.
--- Is able to analyse and to discuss the ethical and normative aspects of the implications and assumptions of scientific thinking and acting with colleagues and non-colleagues (both in research and in designing); integrates these implications in scientific work.

8. is competent in self-directed and continuous learning
Developments in society are characterised by an enormous increase in complexity on the one hand and available knowledge and information on the other hand. This requires the ability to decide for yourself which knowledge, skills and attitude you need to acquire, select and use in a specific context. This, in turn, requires an attitude of openness, adaptability, self-reflection and curiosity as well as an understanding of what learning actually is.
--- Takes responsibility for his or her own learning process and professional development.
--- Gives direction to and designs his or her own learning process and professional development.
--- Has an open attitude towards herself or himself, towards others and towards (future) developments in society, technology and science.